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A B S T R A C T  

We present a quantitative form of the result of Bai and Yin from [2], 
and use it to show that the section of ~l+~)n spanned by n random 
independent sign vectors is with high probability isomorphic to euclidean 
with isomorphism constant polynomial in 5 -1 . 

1. In troduct ion  

This paper consists of two distinct parts. The first one presents the "local" 

version of the result of Bai and Yin from [2]. This result gives an estimated 

lower bound for the probability that  the smallest singular value of a random 
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sign matrix is outside some interval. In particular, it gives a lower bound for 

the probability that  an "almost square" matrix, that  is, a (1 - 5)n x n matrix, 

has smallest singular value above ~ 5. This is a "finite dimensional" version of 

the results of Bai and Yin [2], and this "local" version is much more useful for 

applications in Asymptotic Geometric Analysis problems, where quantitative 

estimates of deviations are needed. This is presented in Section 2. A more 

extensive presentation of this result will be given by the IVth named author in 

[14]. 

The second part of this paper consists of precisely such an application, where 

the method of [1] and some other recent developments are joined with the above, 

to improve results from [8] and from [1] regarding the distance from euclidean 

space of almost full dimensional sections of the space gg realized as images of 

random sign matrices. For N = (1+5)n we receive estimates on the isomorphism 

constant which are much better than were previously known, and in particular 

are polynomial in 5. 

ACKNOWLEDGEMENTS: The authors thank Prof. S. Szarek for bringing the 

paper [2] to their attention and suggesting that  the methods used there yield 

an estimate on the probability of deviation. The IVth named author thanks 

Prof. E. Gluskin for useful discussions of the combinatorial estimates in 

Section 2.3. The authors thank the referee for his careful reading and useful 

comments. 

2. T h e  r a t e  of  convergence  in t h e  resu l t  of  Bai  a n d  Yin  

In this section we present a lower bound on the least singular value of a Bernoulli 

random matrix, in the spirit of Bai and Yin [2]. 

2.1 INTRODUCTION AND MAIN STATEMENT. Let X be a p •  matrix of random 

signs: Xik are independent for 1 < i < p and 1 < k < n, 

(1) P{Xik : 1} = P{Xik = -1}  = 1/2. 

We study the spectrum As of the covariance matrix 

(2) S ~- n - l x x  T. 

Let #s  = p-1 ~-]~cA(S) 5A be the empirical eigenvalue distribution of S. Mar- 

chenko and Pastur [9] proved that  

dlzs a's', fMpdx as n ---+ oo, 
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where the limit density equals 

{ 2 ~ - - ~ V / ( x - a ) ( b - x ) ,  a < x < b  
(3) fMp(x) = 0, otherwise, 

with the notation 

(4) y -- p /n  < 1 (fixed), a = (1 - v/-y) 2, b = (1 + v~)  2. 

It is natural to ask whether the eigenvalues of S can lie far from the support 

[a, b] of this distribution. Bai and Yin [2] answered negatively, proving (for a 

more general random matrix model) that  with probability 1 

(BY)  mi (S) a,  m x(S) b as n 

In the spirit of local theory we strive for a quantitative form of this result. 

THEOREM 1: There exists a universal constant C > 0 such that the following 

holds. Let X be a p x n matrix of random signs as defined by (1); define S as 

in (2) and y, a and b as in (4); assume that 

(5) C log2______nn _< e < 1. 

Then the probability that S has eigenyalues outside [a - ~, b + e] is less than 

e x p ( - C - l y l / 6 n l / 6  el/2) = e x p ( - C - l p U 6  eU2). 

For y close to 1 the theorem yields the following lower bound on the least 

eigenvalue of S: 

THEOREM 2: There exists a universal constant C > 0 such that if, in the 

notation of Theorem 1, y = 1 - 5  with 1/2 > 6 > Cn -1/6 logn, then 

~{Z~min(S) ~ (~2/8} _~ exp(-C-lnl /6(~) .  

Recently, Litvak, Pajor, Rudelson and Tomczak-Jaegermann [7] proved (in a 

more general setting) that  if y = 1 - ~  with 1 > ~ _> c l / lnc2n  in the notation 

of Theorem 1, then 

(LPRT) P{Amin(S) _< Aa 1/~} <_ e x p ( - C n ) ,  

where A > 0, 1 > a > O, C, 0 ,c2  :> 0 are universal constants. 
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Note that  the bound on the probability decays exponentially; this is rather 

important in geometric applications. We do not know whether the left-hand 

side in Theorem 2 is in fact as small as e x p ( - n h C / c )  for some C > 0. 

Let us show that  Theorem 1 implies Theorem 2. 

Proof of Theorem 2: The Taylor expansion yields v/~ ~ 1 - 5/2 and hence 

(1 - v~)  2 - e ~ 52/4 - e. 

Now take e ~ 52/8 and use Theorem 1. We obtain: 

P( min(S) < 52/8  < exp(- nl/~ exp( 
- , , / g c  J -< , -  - -  

nl/65 'l 
25/aC]" 

The main idea behind the proof of Theorem 1 makes use of the following 

construction, due to Bai and Yin [2]. We define a sequence of matrices T(1), l = 

0, 1, 2 , . . . ,  that  are certain polynomials of the matrix T = S -  ][: T(l)  = pl(T).  

If # 1 , . . . ,  #p are the eigenvalues of T, then P l (# l ) , . - .  ,Pl(#p) are the eigenvalues 

of T(l).  

The polynomials Pl can be expressed via the Chebyshev polynomials of the 

second kind. If # ~ [ a -  1, b -  1], the sequence Pl (#) tends to infinity exponentially 

fast. We define PL and prove these observations in Section 2.2. 

On the other hand, the expression E Tr T(1) allows a graph-theoretical inter- 

pretation showing that  it can not grow too fast. We prove such a bound in 

Section 2.3, using a modification of the combinatorial argument due to Bai and 

Yin. 

In Section 2.4 we combine these facts and obtain a bound on a - )~min(S), 

)~max(S) - b that  concludes the proof of Theorem 1. 

2.2 CONSTRUCTION AND BASIC PROPERTIES OF T ( l ) .  Denote  Yl = ( P -  2)/n,  

Y2 -- ((P - 1)(n - 1))/n2; y >_ Y2 ~ Yl = Y - 2/n.  

Define a sequence of matrices T(l)  =- (Tij(l))ij, 

{ T ( 0 ) = i ,  T ( 1 ) = T = n - I X X  w - l i ,  
(6) T(l  + 1) = ( T -  Yl~)" T(1) - y2 " T ( I -  1). 

We have: T(1) = Pl (T), where 

p 0 ( , )  = 1, p l ( ~ )  = ~, 

p ~ + l ( , )  = ( ,  - y l ) .  p ~ ( , )  - y 2 - p ~ - l ( , ) .  



Vol. 156, 2006 POLYNOMIAL BOUNDS FOR LARGE BERNOULLI SECTIONS 145 

Recall the definition 

(Chebl) Ul(cos 0) - sin((/+ 1)0) 
sin 0 

of the Chebyshev polynomials of the second kind. Here, both the right-hand 

side and the left-hand side are polynomials; hence the equality makes sense for 

any 0 C C. 

Equivalently, Ul can be defined by the recurrence relation 

(Cheb2) { Uo(x) = 1, Ul(x) = 2x, 
V l T l ( X  ) = 2XUl(Z) -- Ul_ l (X) .  

The latter definition readily yields the formula 

. 1/2 U f # - y l ~  (#-Yl~]. (7) = 92 ) + 

Remark: If we replace Yl and Y2 with y in (7), the sequence becomes ortho- 
gonal with respect to the Marchenko-Pastur measure (3). Kusalik, Mingo and 

Speicher [6] used a different form of this sequence to study the spectral properties 

of random matrices with complex Gaussian entries, and called it the sequence 

of shifted Chebyshev polynomials of the second kind. 

Now we use (Chebl) to estimate the polynomials Pz. 

LEMMA 3: There exists a universal constant C > 0 such that the following 

properties hold for any even l > 2, 0 < e < 1: 

1. For any tt C N, 

(8) Pz (#) >_ -21y 1/2. 

2. I f  

then 

I~-y~l ->  2v/-~ + e, 

(9) Pl (#) _> Y2l/2exp(C - l lel/2y21/4). 

Proof." 

1. If x lies outside the interval [cos(l~r/(l + 1)), cos(r / ( /+  1))], then Ut (x) > 0. 

Otherwise, x = cos0 for some rr/(1 + 1) < 0 < br/(l  + 1); therefore 

Ul(X) >_ - sin-l(1r/(l + 1)) > - ( l  + 1)/2. 
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Hence 

Pz(#) _> -(Y2 U2 + ylY2(l-1)/2)(1 + 1)/2 >_ -2yL/2l. 

2. If Ixl > 1 + e, x = cosi0 for some 0 _> C-lel/2; hence 

U~(x) = s in( ( /+  1)iO)/sin(iO) >_ e 1~ >_ e Cchd/2. 

Pl(#) > _ Y2l/2exp (/-2-~y) �9 

Therefore 

Next we apply (8) and (9) to the eigenvalues of T. 

LEMMA 4: 

even, 

(10) 

and 

then 

(11) 

Proo~ 

Then by (10) 

There exists a universal constant C > 0 such that if n > l > 2 is 

( vCl~ 
C max -v~Yn, 12 ] < e < 1 

max{l# - y l l #  is an eigenvalue ofT} >_ 2v/- ~ + e, 

TrT(l) k Yl/2exp(C-11el/2y-1/4). 

Let #1 , . . . ,  ~p be the eigenvalues of T; suppose I#1 - Y[ >- 2x/~ + e. 

]Pl  - Yll >--- 2 ~ / r ~  -Jcs --  2 [~ry  --  V ~  -- [Y --  Yl] 

> 2 V / ~  + e -- 4 / ( n v ~  ) -- 2In 
> 2 V ~  + ~ -- 6/(nv~) >_ 2 V ~  + C1~. 

Write the bound (9) with # = #1 and the bound (8) with # = # 2 , . . . ,  #p; add 

the inequalities and use (10) once again: 

Tr T(1) > y21/2exp(C-11X/%e ~ _ 2lpyl/2 > C;lyl/2exp(C21 l ~  _ 2n2yl/2 
- ~ r  / - ~ r  

> yl/2exp(C311el/2y-1/4). | 
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2 . 3  C O M B I N A T O R I A L  DESCRIPTION OF T(1). Now we give a combinatorial 

description of E Tr T(l).  

LEMMA 5: The following equality holds: 

(12) Tij(l) = -~1 E*XivtXulvlXItlv2Xu2v2...Xul_lvlXj~I, 
where the sum ~ *  is over all u l , . . .  ,Ul--1 and Vl, . . .  ,v l satisfying 1 < ur ~_ p 

for 1 < r < 1 - 1 and 1 < v8 <_ n for 1 < s < l, and such that, in addition, 

i ~ U  1 ~ ?.t 2 CU 3 ~ "'" ~Ul -  1 C j 
vl # v2 # v3 # . . .  r vz. 

(Notice that  there is no requirement ul ~ u3, for example.) 

Proof." Denote by T[j(1) the right-hand side of (12); denote T'(1) = (Tfj(l)). 

Then T'(0) = ][ = T(0), T'(1) -- T = T(1). 

Further, ( T .  T'(1 - 1))ij is a sum of the same form as (12), but without 

the condition Vl ~ v2. The three cases (i) v l r  v2, (ii) Vl = v2 and i ~ u2, 

(iii) Vl = v2 and i = u2 yield the terms 

T'(/), y , T ' ( l -  1), y 2 T ' ( l -  2), 

respectively. Therefore T'(1) satisfy the same recurrence relation (6) as T(/); 

this concludes the proof. | 

The random variables X~v are independent; therefore the expectation of a 

term in (12) vanishes unless every X~v appears an even number of times in the 

product. In the latter case, the expectation equals 1 (note that  0 is even). 

COROLLARY 6: The expectation n~ETrT( l )  equals the number of configura- 

tions 

l ~ i ,  u l ,u2,u3, . . . ,Ul_l  ~p ,  l ~v l , v2~ . . . , v l  ~ n ,  

such that { i ~ u l  #u2 ~u3 # " . # u l - 1  r  
Vl ~ V2 ~ V3 r  r Vl, 

and every pair uv appears an even number of times in the sequence 

iVl, ~t lVl ,  UlV2, u 2 v 2 ,  �9 �9 �9 , Ul-lVl, ivl. 

The following graph-theoretical interpretation will be of use. Every configu- 

ration of i, ur and v8 which is permitted in Corollary 6 corresponds to a closed 

path W in the bipartite graph Kp,n such that  
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(Wl)  the path W passes through every edge an even number of times; 

(W2) W never passes through an edge 2 times consequently (i.e. the pattern 

w ~ w I ~ w is not allowed). 

(Moreover, every path begins on the left side of the graph, but we ignore this 

in our estimates.) 

Let W be a closed path on an arbitrary graph G so that  (W1) and (W2) hold. 

Consider W as a set of triples (Wl,W2,r), where 1 < r < 21, meaning that  the 

r th  edge on W goes from Wl to w2. 

Divide the edges into 3 classes: 

T1 {(w~,w2,r) �9 WlVr' < r , (wl ,  ' ' = w2, r ) �9 w ~ ~ # ~2 A w~ # w2}, 

T2 --= {(Wl,W2,r) �9 Wl3r' < r:  (wl,w2, r') �9 T1 V (w2,wl,r') �9 T1, 

Vr' < r" < r: (w~, ~2, r") r W A (~2, ~ ,  r") r W}, 

T3 = W\(TI  U T2). 

(Semiformal verbal description: The edges of T1 are the first edges to visit 

their endpoints; that  is, T1 is the DFS tree of W. Every edge in T1 appears at 

least once again on W; we denote by T2 the set of second appearances of the T1 

edges. All the other edges form the set T3.) 

Let us call a sequence of vertices f = WlW2... wk (k > 1) a protofragment of 

W if the following 3 conditions hold: (i) for some r 

(wl ,  w2, r), (w2, w3, r + 1 ) , . . . ,  (wk-1,  wk, r + k - 2) �9 T1, 

(ii) for some r '  

either (Wl, w2, r ' ) ,  (w2, w3, r '  + 1 ) , . . . ,  (wk-1, wk, r' + k - 2) �9 T2 
or (wk, wk_l , r ' ) , . . . , (w3,  w2,r' +k- -3) , (w2 ,  wl ,r '  + k - - 2 )  �9 T2, 

and 

(iii) f is maximal with respect to the 2 conditions (i)-(ii). 

If f = WlW2... Wk is a protofragment, wl # i, we call its suffix ] = w2. . .  wk 

a fragment of length k - 1. If wl = i, we call f a fragment of length k. The 

vertices of W are thereby divided into F fragments. 

The following combinatorial bound will be crucial (~ denotes cardinality): 

LEMMA 7: F < 2~T3 + 1. 

Proof: Let f be a protofragment that  starts with w ~ i; consider 2 cases. If f 

is passed in the same direction in T1 and T2, the edge adjacent to w in one of 

the 2 passages is in T3. 
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Otherwise, the last edge before the second appearance of f is in T3. 

Let e be the T3 edge in either case. The map f H e is at most 2-1; hence 

F - 1 < m 

LEMMA 8: The number of different fragments of length k in Kp,n is bounded 
by 2y-1/2(pn) k/2. 

Proof: First decide to which side of the graph does the first vertex belong. 

Then choose all the vertices. | 

Now we can bound the number of paths satisfying (Wl)-(W2) on Kp,n. Let 

V be the number of (distinct) vertices on W. 

First, choose the lengths of the fragments. This can be done in (FV_I) 

VF/F! ways. Next, choose the fragments themselves; by Lemma 8 this can be 
done in at most (y/a)-F/2(pn)V/2 ways. 

We can change the directions of the fragments in T2, in 2 F ways. Now that the 

fragments are ready, glue them onto the path; this can be done in (21-2V+1) 2F 
ways (just pick a place for every fragment). 

Now there are 21 - 2V vertices left. Every one of them coincides with one 

of the V vertices that we already have. Once we choose one of the V 2z-2v 
arrangements, our path is ready. 

Multiplying all these numbers, we see that the number P of paths is bounded 

by 
l 

v_<X: 
V = I  

l 

V = I  

Now, (x/F) F <_ 

l F 
E ~.  (y/4)-g/2(pn)V/22F(21 - 2V + 1)2Fv 2t-2V 
F = I  

l 
E ( B n ) V / 2 ( C V y - 1 / 2 ) F v 2 1 - 2 V  X ( 2 / -  2V + 1 ) F .  

F = I  F 

eX; F <_ 2~T3 + 1 = 41 - 4V + 5. Therefore 

l l 
<- E E (Pn)v/2(C'Vy-U2)4'-4V+5v2t-2v 

V = I  F---1 

l 

<- 
V=I 

l 

<- 19y-5/2(pn)U2 E (Pn)(V-ll/2(C'Va/2y-1/2)al-4v" 
V = I  



150 S. ARTSTEIN-AVIDAN, O. FRIEDLAND, V. MILMAN AND S. SODIN Isr. J. Math. 

Now, if (Cl13/2y-1/2) s < pn, every term in the sum is no greater than 1. 

Therefore if 
l < C"-lyl /3(pn)  1/12 = C'- ly5/12n 1/6, 

then 

finally (in one line): 

7) <_ ll~ 

(13) ETrT( / )  _< ll~ (1-5)/2 if I ~ c"- ly5/12n 1/6. 

2.4 CONCLUSION OF THE PROOF. 

Proof of Theorem 1: 
Then by (5) 

and 

Let l = 2[(2C")-1y5/12n1/6j in (13). 

C log s n C 
e _ > - - > - -  

- 

e > --Cl~ > C v ~ l ~  12 > Czx/yl~ 
- 1 2  ; 

therefore (10) holds. 

By Lemma 4, Chebyshev's inequality, the estimate (13) and the condition (5) 

that  we imposed on e, 

F{S has eigenvalues outside [a - e, b + e]} 

= F{T has eigenvalues outside [a - 1 - e, b - 1 + el} 

< P{Tr T(1) > yU2exp(C-11el/2y-1/4)} 

EWrT(1) < <_ Cy5/3n5/3exp(-C-lyl /6nl /6eU 2) 
- yU2exp(C-11el/2y-U4) 

<_ exp ( -C l - ln l /6y l /6  eU 2) = exp ( -C l - lp l /6  el/2). 

We are done. | 

3. Application to large sections of gl g 

It is well known that  g~l+~)n has isomorphic euclidean sections of dimension 

n (see [5]), with constant of isomorphism independent of the dimension n and 

depending only on 6. When the section is taken to be the image of a matrix 

with i.i.d, gaussian entries (which is the same as taking a random subspace 

in the Grassmanian GN,n with respect to the normalized Haar measure), the 
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dependence is polynomial in 5, with high probability on the choice of the entries. 

This was discovered first in the results of [3]. 

The image of a matrix of signs is simply the span of some set of vertices 

of the unit cube, and thus has more structure, and is sometimes more useful 

in implementations. Schechtman showed in [11] that  the image of a matrix 

whose rows are N = Cn sign-vectors in ]R n, where C is a universal constant, 

also realizes, with high probability on the choice of signs, an isomorphic to 

euclidean section of i N. The question then remained whether the constant C 

can be reduced to be close to 1. This was resolved by Johnson and Schechtman, 

and follows from their paper [4]. However, they showed the existence of such 

a sign matrix, and not that  it is satisfied for a matrix whose rows are N = 

(1 + 5)n random sign-vectors. In a paper by Litvak, Pajor, Rudelson, Tomczak- 

Jaegermann and Vershynin [8] this was demonstrated. However, the dependence 

of the constant of isomorphism on 5 in their result is exponential which is bad, 

and they get c(5) = c 1/~. In this paper we get a better dependence, polynomial 

in 5, however the probability that  we get is slightly smaller than the probability 

in [8], with n 1/6 in the exponent instead of n. 

We remark that  results of this type can be viewed also in a different way, as 

a realization of Khinchine inequality with few vectors. The classical Khinchine 

inequality states that  (for the best constants as below see [15]) 

1_~_~X2.~1/2 Aver1 ..... en=• n ( f i ) 1 / 2  < _< 
- -  i=1 i--1 

Instead of averaging over all sign-vectors we may average over only n(1 + 5) of 

them (chosen randomly, and good for all x), and get the same inequality only 

with a worse constant instead of x/2. The constant is universal for fixed 5, and 

the way it behaves when 5 ~ 0 is the subject of this paper, reformulated. 

In this section we show that  for a random N • n sign matrix, where N = 

n(1 + 5), we have with high probability that  the section of gl N given by its image 

is isomorphic to the euclidean ball with polynomial dependence of the constants 

of isomorphism on 5. The developments which allowed this advancement include 

the methods of Schechtman to get L1 splitting as in [12], the quantitative version 

of the result of Bal and Yin [2] given in Theorem 2 of the previous section, and 

the use of Chernoff bounds for geometric purposes much like is done in [1]. We 

prove 

THEOREM 9: There exist universal constants 50, c', c", and co such that the 

following holds. Let c"n-U61ogn  < 5 < 50, and denote N = (1 + 5)n. Then 
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with probability greater than 1 - e -c'~nl/6, for (1 + 5)n random sign-vectors 

cj E { -1 ,  1} n, j = 1 , . . . ,  n + 5n, one has for every x E R n 

1 N 
(14) c(5)lx[ <- ~ E I(x'cJ)l' 

j=l 

where c(5) -- c055/2/log(i/5).  

In fact it is easy to see that  once we know Theorem 9 the above remains true 

for any 5 > 0, and the restriction 5 < 5o is artificial. Also, an upper bound in 

(14) is known and standard, similar to Lemma 11. 

Notation: We pick the N = n + 5n random sign vectors ej, normalize them 

to be unit vectors by dividing by v ~ and denote the normalized vectors by 

Vl , . . . ,  Vn+Sn/2, Wl , . . .  ,W5n/2, that  is, vj = Q / v  ~ for j = 1 , . . . ,  n + 5n/2 and 

wj = e(n+~n/2+j)/v/-n for j = 1 , . . .  ,5n/2.  Throughout  the proof c, Cl, c~, C3 

etc. will denote universal constants which can be easily estimated. 

Our proof imitates the proof of the theorem when the first n vectors form 

an orthonormal basis, and then the upper square in the matrix is an isometry. 

To substitute this fact, we will first of all need an estimate for the smallest 

eigenvalue of an n x (1 + 5/2)n matrix of random signs, which is given in Propo- 

sition 10 below, which is simply a reformulation of Theorem 2. It can be looked 

upon as a near-orthogonality result for the n random column vectors which are 

sign-vectors that  live in (n + 5n/2)-dimensional space. 

PROPOSITION 10: There exist universal constants 50, c", c I and c' 1 such that 

for any c"n-1/61ogn < 5 < 50, if vj axe n + 5n/2 random vectors chosen 

uniformly and independently in {-1/v/-~, X/x/~} n then with probability greater 

than 1 - e -c'~nl/8 we have for every x E ]~n that 

n+Sn 1/2. 

j=l 

The idea of the proof of Theorem 9 is to use the "near orthogonality" of the 

first n + 5n/2 row vectors to ensure a lower bound in most directions. For the 

directions which remain, we obtain a lower bound by using the last 5n/2 rows. 

To this end we will use a net argument, and hence we also need an upper bound 

for the contribution of the last 5n/2 rows. This is given by the following 

LEMMA 11: There exist universal constants ct3 and C3 such that for any 5 > 0 

if wj are 5n/2 random vectors of  + l / v / n  then with probability greater than 
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1 - e -c'3n we have for every x E ]~n that  

5n/2 

(15) (1/X/~) ~ ](Z, Wj)I ~_ C3X/~Ix[. 
j=l 

(Notice that although for a single point, in expectation, we have (15) with 

instead of x/~, for the probability to suffice for the whole net we need to allow 

deviation of order v/5 from the expectation.) 

Proof: Bernstein inequality implies that for any t > 1 

[ 2  ~n/2 t [x, ] < e -ct2~n 

for a universal c. We pick a 1/2-net on the sphere S n-1 with cardinality 5 n and 

pick t = X/2 In 5/(c(f). Then with probability greater than 1 -  5 -n we have that 

for every element x in the net 

1 ~/~ 

j=l 

Successive approximation of any point on the sphere by points in the net and 

homogeneity of the inequality (15) completes the proof, where C3 = ~ / c .  

I 

We will also need a covering result of Schfitt [13], about the covering number 

of the unit ball of ~ by euclidean balls: There exists a universal constant C5 

such that for every k <: m 

(16) / ( x / ~ B ( e ~ ) ,  C a x / ( m / k ) l o g ( m / k ) B ( e ~ ) )  <_ e k 

where for two convex bodies K and T the number N ( K ,  T )  denotes the minimal 

number of translates of T needed to cover K. 

Proof of Theorem 9: We define 

1 nTSn/2 

(notice that we only use vj and not wj). If a point on the sphere is not in ~ 

then a lower bound ~ holds for this point for the left hand side of (14). We 
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denote by A the (n+hn/2)  • n matrix with rows vj, and for convenience denote 

m = n + 5n/2. 

We now use (16) to cover ImA N v/-nB(g~) by e ~6~ balls of radius r = 

C4V/((1 + 5)/(c~5~))log((1 + ~)/(c~55)) (where c~ is a universal constant to be 

determined later). We have used the fact that  taking a section only reduces the 

covering number by euclidean balls. Denote by yj C II( m N ImA the centers of 

this covering, and let xj C ]~n be their pre-images, so that  Axj  = yj. Since there 

are only e~ 6n of them, we can use Chernoff inequality in the following way: For 

a suitably chosen universal c5 the probability that  for a single i we have that  

I(xj,wi)l ~_ 3ChlXjl/V~ is greater than 1/2 (this is not difficult to prove, see 

for example [1]). Therefore, by Chernoff's theorem, the probability that  for at 

least 1/3 of the indices i = 1 , . . .  ,5n/2 we have that  I(xj,wi)l > 6ChlXjl/v/-n is 

greater than 1 - e -2c~5n (this is our definition of c ~ 5, which is universal). We get 

that  with probability 1 - e -c~hn for every j we have 

1 (~n/2 

i= l  

Let x G S n - l ,  and consider 

(17) 
1 n+~/2 5n/2 

i=1 - -  i= l  

(which is the same as the left hand side of (14) up to a factor (1+5)).  Recall that  

if x E S n-1 and x !~ E~, we have a lower bound at least 9' for (17). Otherwise, 

we have Ax E 9'v/-nB(g~) (and of course also Ax E ImA). Therefore, there 

is some index j with lAx - vAxj l  < 9'r, where we use absolute value I" I to 

denote the euclidean norm. This implies, using Proposition 10 (which holds 

with probability at least 1 - e -c'~nl/6), that  Ix - 7xj[ < 9"r/(c~5). In particular, 

[xj[ > 1/9' - r/(clh). By (15) we know that  this implies that  

5n/2 1 5n/2 ~n/2 
1 1 

i=l X/It i=l i----1 

> ch 9"lx l - Chv 9"r/(cl ) 

> - rg '(1 + chvq)/(Cl ). 

This tells us we may choose 7 = 52C5Cl/(2r( 1 +C3V~)),  and have a lower bound 

c55/2 for this set. For the other set we have lower bound 7, that  is (remembering 
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what was r), co~5/2/log(l/6) 1/2 (for co a universal constant suitably chosen). 

The proof is complete. | 
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